

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according toArticle 29 of the Regulation (EU) No 305/2011 of the European Parliamentand of the Council of 9 March 2011

European Technical Assessment ETA-07/0141 of 2020/05/05

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011:ETA-Danmark A/S

Trade name of the construction product:	Rockpanel Durable 8 mm finish Colours and Rockpanel Durable 8 mm finish ProtectPlus
Product family to which the above construction product belongs:	Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system
Manufacturer: Manufacturing plant:	ROCKWOOL B.V. Industrieweg 15 NL-6045 JG Roermond Tel. +31 475 353 000 Fax +31 475 353 550 ROCKWOOL B.V. / Rockpanel Konstruktieweg 2 NL-6045 JD Roermond
This European Technical Assessment contains:	34 pages including 4 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	European Assessment Document (EAD) no. EAD 090001-01-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system
This version replaces:	The previous ETA with the same number issued on 2014-12-15

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product General

Rockpanel Durable 8 mm finishes Colours and Rockpanel Durable 8 mm finish ProtectPlus is prefabricated compressed mineral wool boards with thermo-setting synthetic binders. The boards are fastened to timber, aluminium or steel subframes. Fastening to the timber subframe is carried out with corrosion resistant nails or screws or by bonding (with an intermediate Rockpanel strip with specified finish). Fastening to aluminium subframe is carried out with corrosion resistant rivets or by bonding.

Fastening to steel subframe is carried out with corrosion resistant screws or rivets

Mechanical fasteners, gaskets, adhesives with primers, strips for bonding and aluminium profiles are specified by the ETA-holder.

The Rockpanel Durable Colours panels are surface treated with a four-layer water-borne polymer emulsion paint on one side, in a range of colours.

The Rockpanel Durable ProtectPlus panels are surface treated with a four-layer water-borne polymer emulsion paint on one side, which has been provided with an extra anti-graffiti clear coat as a fifth layer on the colour paint.

The physical properties of the panels are indicated in table 1.

Table 1

Property	Value
Thickness, nominal	8 mm
Length, max	3050 mm
Width, max	1250 mm
Density, nominal	1050 kg/m ³
Bending strength, length and width	$f_{05}\!\geq 27~N/mm^2$
Modulus of elasticity	m(E) ≥ 4015
	N/mm ²
Thermal conductivity EN 10456	0,37 W/(m • K)
Cumulative dimensional change	Length: 0,085 %
	Width: 0,084 %
Coefficient of thermal expansion,	$\alpha = 10,5$
length and width	10 ⁻⁶ °K ⁻¹
Coefficient of moisture expansion	0,302 mm/m
23 °C/50 %RH to 95 %RH	after 4 days

Finishes

The finish is indicated in table 2. The paints are

provided in a number of colours.

Table 2Finish Rockpanel Durable boards		
Rockpanel Durable Colours:	Colourpaint [a]	
(water-borne polymer emulsion		
paint)		
Rockpanel Durable ProtectPlus:	Clear coat pure or	
(water-borne polymer emulsion	Clear coat with	
paint with anti-graffiti clear	wood texture	
coat)	"Woods" e.g.:	
	Teak, Alder,	
	Cherry, Clearcoat	
	with stone texture	
	"Stones" e.g.	
	Mineral Chalk,	
	Basalt Anthracite	
	etc., or with	
	metallic particles	
	e.g. Metallics	
	Aluminium,	
	Briliant Karbo,	
	Chameleon etc.	

[a] Also available with a water-borne polymer emulsion primer for painting on the building site

The colourfastness of the panels is indicated in table 3.

Table 3 Colourfastness Rockpanel Colours		
Property Value (ISO 105 A02)		
Colour fastness after Rockpanel Durable		
5000 hours artificial	Colours: 3-4 or better	
weathering	Rockpanel Durable	
(TR010 Class S)	ProtectPlus: 4 or better	

Subframes

The panels are attached to the building by fixing to a sub-frame of aluminium, steel or wood.

The vertical battens should have a minimum thickness of 28 mm (solid wood).

Also LVL battens (Laminated Veneer Lumber) with a minimum thickness of 27 mm, according to EN 14374, can be used (Ultralam R, CE 0672-CPD-I)

Appropriate preservative treatment of subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required select an appropriate level of durability and ensure that the timber or wood-based product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

The minimum thickness of the vertical aluminium profiles is 1,5 mm. The aluminium is AW-6060

according to EN 755-2. The $R_m/R_{p0,2}$ value is 170/140 for profile T6 and 195/150 for profile T66.

The minimum thickness of the vertical steel profiles is either 1,0 mm [a] (steel quality is S320GD +Z EN 10346 number 1.0250, or equivalent for cold forming), or 1,5 mm [a] (steel quality EN 10025-2:2004 S235JR number 1.0038).

[a] **The minimum coating thickness** (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment.

The Zinc Life Time Predictor can be used to calculate the Corrosion Rate in µm/y for a Z coating: http://www.galvinfo.com:8080/zclp/ [copyright The International Zinc association].

The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner.

Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

Joints

Horizontal joints on metal sub-constructions

The horizontal joints between the panels can be open in the case of steel supports or aluminium rail supports.

Horizontal joints on timber sub-constructions

The horizontal joints between the panels are made with a Rockpanel "A" extruded aluminium chair profile or equivalent in the case of panels mechanically fixed on timber battens. The chair profile has an overlap of at least 15 mm on the board above the profile. See annex 1.

A 3 mm thick EPDM foam gasket (self-adhering backside) is fixed to the timber battens. If the horizontal joint is closed with an aluminium chair profile, the vertical joint is backed with the 60 mm wide gasket and for the intermediate battens the 36 mm gasket is used.

In the case of open horizontal joints the width of the gasket 15 mm at both sides wider than the batten.

Fasteners

The panels are mechanically fixed or bonded either to vertical timber (with intermediate Rockpanel strips and specified finish) or aluminium subframe. The mechanical fastening to steel subframe is carried out with stainless steel screws or stainless steel rivets. The mechanical fastening to timber battens is carried out with either Rockpanel stainless steel screws $4,5 \times 35$ mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels or Rockpanel ring shank nails. Ring shank nails are available: option 1 "Rockpanel High

Performance nail": 2,7/3,1 x 35 mm (dimensions according table 8.2) or option 2 "Rockpanel standard nail": 2,7/2,9x 32/40 mm (dimensions standard version according table 8.1). The ring shank nails must be from stainless steel quality no. 1.4401 or 1.4578 (EN 10099) with heads in the with heads in the colour of the panels. Fastening to aluminium is carried out with aluminium EN AW-5019 (AIMg5) rivets, head diameter 14 mm, shank diameter 5 mm, head colour coated. The mechanical fastening to steel subframe is carried out with either EN 10088 (no 1.4578) rivets, head diameter 15 mm, body diameter 5 mm, head colour coated, or EN 10088 (no 1.4567) rivets, head diameter 14 mm, body diameter 5 mm, head colour coated.

For correct fixing, a riveting tool with rivet spacer must be used , see annex 3 Table 8.4.

For fixing to steel frames also a stainless steel EN 10088 no. 1.4404 self- drilling screw, head diameter 12 mm is available. The screw is available in 5.5×25 for clamping thickness up to 10 mm and in $5,5 \times 35$ mm for clamping thickness up to 19 mm. See annex 3 table 8.5.

Bonding to both timber (with intermediate Rockpanel strips and specified finish) and aluminium rails is carried out with Rockpanel Tack-S adhesive. The bonding shall be carried out in accordance with the manufacturer's instructions. See annex 1. Bonding is only allowed on vertical sub-constructions with a drained cavity for ventilated applications.

The maximum fixing distances, hole diameter and design value of the axial load appears from annex 2, tables 5, 6 and 7.

The installation method with the use of fixed points and moving points appears from table 7 and figure 8.

2 Specification of the intended use in accordance with the applicable EAD

The boards are intended for external cladding and for fascias and soffits. The cladding on vertical timber battens with mechanically fixed boards can be carried out with or without ventilated cavities at the back. The cladding on vertical timber battens provided with mechanically fixed Rockpanel strips (with specified finish) with the bonding system must be carried out with a ventilated cavity at the back. The cladding on vertical aluminium or steel support shall be carried out with a ventilated cavity at the back. See annex 1. The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years.

In additition, for aluminium support systems intended to be used for facades:

In some member states national climate conditions may reduce the service life of the aluminium support system to 35 years or more.

An additional assessment of the aluminium support system might be necessary to comply with Member State regulations or administrative provisions.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic	Assessment of characteristic
3.2 Safety in case of fire (BWR 2)	
Reaction to fire	The aluminium profiles are classified as Euroclass A1 Classification of panels: See table 4
3.3 Hygiene, health and the environment (BWR 3)	
Dangerous substances	The kit does not contain/release dangerous substances *), except Formaldehyde concentration 0,0105 mg/m ³ Formaldehyde class E1
	The used fibres are not potential carcinogenic No biocides are used in the Rockpanel boards No flame retardant is used in the boards No cadmium is used in the boards.
Water vapour permeability	Durable Colours: $S_d < 1,80$ m at 23°C and 85 %RH Durable ProtectPlus: $S_d < 3,5$ m at 23°C and 85 %RH
	The designer shall consider the relevant needs for ventilation, heating and insulation to minimise condensation in service.
Water permeability incl. joints for non- ventilated applications	No performance assessed

3.4 Safety and accessibility in use (BWR 4)

In absence of national regulations the design values X_d may be calculated as indicated in the ETA (see tables 6-1 up to and including 6-10). Below is mentioned the safety factors which has been used in the calculation of the design values.

Fixing position and design value X_d of the axial load M/E/C (Middle/Edge/Corner) of mechanical fixings corresponding to the wind load resistance (load acting perpendicular to the façade)

Remark:

Design value X_d obtained by dividing the characteristic value X_k by a partial factor $\gamma_M : X_d = X_k / \gamma_M$

Rockpanel rivets:

To an aluminium subframe, design value X_d : **654/309/156** N (Annex 2 Table 6-1 row (16))

Rockpanel Screws for steel

To a steel subframe design value X_d : **533/241/118** (Annex 2 Table 6-2 row (16))

Rockpanel screws for timber:

Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_{M} .

Boards to a solid timber subframe: see Annex 2 Tables 6-3 and 6-4, row (25), (26) and (27). Strips to a solid timber subframe (bonding system): see

Annex 2 Tables 6-7 and 6-8, row (21), (22) and (23).

Rockpanel High performance nails:

Design value X_d depends on the modification factor $k_{mod,}$ the strength class of the wood and the different material factors γ_M .

Boards to a solid timber subframe see Annex 2 Table 6-6, row (25), (26) and (27).

Characteristic	Assessment of characteristic
	Rockpanel nails – standard version: Design value X_d depends on the modification factor k_{mod} , the strength class of the wood and the different material factors γ_{M} . Boards to a solid timber subframe see Annex 2 Table 6-5, row (25), (26) and (27). Strips to a solid timber subframe (bonding system): see Annex 2 Table 6-9 and Table 6-10 row (21), (22) and (23).
Shear strength mechanical fixings Characteristic values	Rockpanel nails (standard and High-Performance version): Failure load: 1325 N Deformation: 15 mm
	Rockpanel rivets: Failure load: 1722 N Deformation: 1,7 mm
	Rockpanel screws (applies to screws to steel and screws to timber): Failure load: 1549 N Deformation: 9 mm
Characteristic and design initial tensile strength Tack-S adhesive [a] Partial factor for material property $\gamma_{M}=4$ (tensile caused by wind load)	
Conditions +23°, -20°C, -40°C and +80°C	Contact surfaces: rear of the board onto ProtectPlus: $X_k = 6,94 \text{ N/mm}^1$ and $X_d = 1,74 \text{ N/mm}^1$; rear of the board onto Colours: $X_k = 8,30 \text{ N/mm}^1$ and $X_d = 2,08 \text{ N/mm}^1$ Rear of the board onto primer 586:
	$X_k = 4,58 \text{ N/mm}^1$ and $X_d = 1,15 \text{ N/mm}^1$
Conditions +23°, -20°C, and +80°C	Contact surfaces: rear of the board onto aluminium: $X_k = 5,9$ N/mm ¹ and $X_d = 1,48$ N/mm ¹
For the partial load factor $\gamma_{\rm F}$ = 1.5 shall be taken	
Characteristic and design initial tensile strength FoamTape[a]	
Conditions +23°	$ Contact surfaces: \\ - rear of the board onto ProtectPlus: X_k = X_d = 0,73 \text{ N/mm}^1 \\ \text{Contact surfaces:} \\ - rear of the board onto Colours: X_k = X_d = 1,17 \text{ N/mm}^1 \\ \text{Contact surfaces:} \\ \text{rear of the board onto aluminium: } X_k = X_d = 0,47 \text{ N/mm} \\ \text{Contact surfaces:} \\ - rear of the board onto primer 586: X_k = X_d = 0,86 \text{ N/mm}^1 \\ $
For the partial load factor $\gamma_{\rm F}$ = 1.5 shall be taken	
Characteristic and design initial shear strength Tack-S adhesive [a] Partial factor for material property $\gamma_M = 40$ (shear caused by permanent load)	
Conditions +23°, -20°C, -40°C and +80°C	Contact surfaces: rear of the board onto ProtectPlus an Colours: $X_k = 7,00 \text{ N/mm}^1$ and $X_d = 0,175 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = 8,5$ N/mm ¹ and $X_d = 0,214 \text{ N/mm}^1$
	Contact surfaces: rear of the board onto primer 586: $X_k = 7,69 \text{ N/mm}^1$ and $X_d = 0,192 \text{ N/mm}^1$

Characteristic

Assessment of characteristic

Characteristic and design initial shear strength FoamTape[a]	
Partial factor for material property $\gamma_{M}=20$	
(shear caused by temporary load)	
Condition	Contact surfaces: rear of the board onto ProtectPlus and
+23°	Colours : $X_k = 1,00$; $X_d = 0,05$ N/mm ¹
	Contact surfaces: rear of the board onto aluminium: $X_k = 0.99$
	N/mm^1 ; $X_d = 0.05 N/mm^1$
	Contact surfaces: rear of the board onto primer 586: $X_k =$
	$0,85 \text{ N/mm}^1$; $X_d = 0,04 \text{ N/mm}^1$

[a] For the partial load factor $\gamma_F = 1.5$ shall be taken

difference after 4 days mm/m

Deformation shear declared Tack-S adhesive	
,,, _,	Contact surfaces: rear of the board onto - ProtectPlus and Colours: 7,5 to 12,7 mm Contact surfaces: rear of the board onto - aluminium: 9,0 to 12,2 mm Contact surfaces: rear of the board onto - primer 586: 9,4 to 12,2 mm

Impact resistance For definition of use category see Annex 6 Table 12	
Panels without a horizontal joint	Hard body impact - steel ball 0,5 kg (1J): Categoy IV Hard body impact – steel ball 0,5 kg (3J): Category III, II and I Hard body impact – steel ball 1 kg (10J): Category II and I Soft body impact 3 kg (10J): Category IV and III Soft body impact 3 kg (60J): Category II and I Soft body impact 50 kg (300J): Category II
Panels with a horizontal joint ready accessible and vulnerable to impacts	Hard body impact - steel ball 0,5 kg (1J): Category IV Hard body impact – steel ball 0,5 kg (3J): Category III, II and I
Dimensional stability	
Cumulative dimensional change % Coefficient of thermal expansion 10 ⁻⁶ °K ⁻¹ Coefficient of moisture expansion 42% RH	Length: 0,085 / Width: 0,084 Length: 10,5 / Width: 10,5

Wind load resistance M/E/C	
Average strength, N	Rivets: 1449 / 617 / 311 (according to Annex 2 Table 6-1)
	Screws for timber: 1105 / 482 /236 (according to Annex 2) Table 6-3 and Table 6-4)
	Screws for steel: 1105/482/236 (according to annex 2 Table 6-2)
	Nails – standard version: 1009 / 627 / 397 (according to Annex 2 Table 6-5)
	Nails - High performance version: 1009/627/397 (according to annex 2 Table 6-6)

Length: 0,288 / Width: 0,317

Characteristic	Assessment of characteristic	
Average failure load N/m ²	Rivets: 2567 / 2769 / 2958 (according to Annex 2 Table 6-1)	
	Screws for timber: 1992 / 2161 / 2243 (according to Annex 2 Table 6-3)	
	Screws for steel: 1992/2161/2243 (according to annex Table 6-2)	
	Nails – standard version : 2637 / 4131 / 5162 (according to Annex 2 Table 6-5)	
	Nails - High performance version: 2637/4131/5162 (according to annex 2 Table 6-6)	
Mechanical resistance of panels	See section 1, table 1	
Resistance to Hygrothermal cycles	Pass	
Immersion in water without UV		
21 Days	Characteristic tensile strength for contact surfaces: rear of the board onto ProtectPlus and Colours: $X_k = 2,80 \text{ N/mm}^1$ Contact surfaces rear of the board onto primer 586: $X_k = 5,44 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = 3,12$ N/mm ¹	
42 days	Characteristic tensile strength for contact surfaces: rear of the board onto ProtectPlus and Colours: $X_k = 2,22 \text{ N/mm}^1$ Contact surfaces: rear of the board onto primer 586: $X_k = 4,73 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = 2,58 \text{ N/mm}^1$	
Humidity and NaCl	Characteristic tensile strength for contact surfaces: rear of the board onto aluminium: $X_k = 6,03$ N/mm ¹	
Humidity and SO ₂	Characteristic tensile strength for contact surfaces: rear of the board onto aluminium: $X_k = 6,67 \text{ N/mm}^1$	

3.7 Sustainable use of natural resources No performance assessed (BWR 7)

3.8 Aspects of durability

Resistance to Xenon Arc exposure

Pass

*) In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

Table 4 Reaction to fire classification

The panels have been classified in accordance with EN 13501-1 with the following parameters:

Table 4 Euroc	lass classification of different construc	tions with Rockpanel boards	
Fixing method Ventilated or non-ventilated	vertical wooden subframe	vertical aluminium subframe	
		Durable Colours and Durable ProtectPlus	
	Non-ventilated.	B-s1,d0	
	Cavity filled with mineral wool	closed horizontal joint	
	Ventilated with EPDM gasket on	B-s2,d0	
	the battens [a] [d]	open 6 mm horizontal joint	
mechanically	Ventilated with 6 or 8 mm Rockpanel strips on the battens [b] [d]	B-s2,d0 open 6 mm horizontal joint	
fixed Ventilated with 9 mm wind board in front of insulation and > 20 mm cavity, with EPDM gasket on the battens. Ventilated with 8 mm Rockpanel strips on the battens [b]	B-S1, d0 open 6 mm horizontal joint		
	B-s1,d0 open 6 mm horizontal joint for finish white and black [c]		
	ventilated with 8 mm RockPanel	B-s2,d0	
handad	strips on the battens [b]	open 6 mm horizontal joint	
bonded ve	ventilated		B-s2,d0 open 6 mm horizontal join

[a] width of the gasket 15 mm at both sides wider than the batten

[b] width of the strip 15 mm at both sides wider than the batten

[c] also valid for a mixture of the the colours white and black

[d] also valid for boards with a primer finish

Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

Euroclass classification

The classification mentioned in table 4 is valid for the following end use conditions:

Mounting:

- Mechanically fixed or adhered as described in table 4, which are attached to the subframe mentioned below
- Adhered to a wooden subframe with intermediate Rockpanel strips mechanically fixed
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation (mechanically fixed)
- The panels are backed with min. 40 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 without an air gap between the wooden subframe (mechanically fixed non ventilated)
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation (fixing method Adhesive Rockpanel Tack-S)

Substrates:

• Concrete walls, masonry walls, timber framing

Insulation:

- Ventilated constructions: The battens are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of min. 28 mm between the panels and the insulation
- Non-ventilated constructions: The panels are backed with min. 40 mm mineral wool insulation with 30-70 kg/m³ between the battens and min. 50 mm with density 30-70 kg/m³ behind the battens without air gap
- Ventilated construction and fixing method adhesive Rockpanel Tack-S: The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of of min. 36 mm between the panels and the insulation
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification
- Results are also valid for the same type of panel used without insulation, if the substrate chosen according to EN 13238 is made of panel with Euro class A1 or A2 (e.g. fibre-cement panel)

Subframe:

- Vertical softwood battens without fire retardant treatment, thickness minimum 28 mm
- Test results are also valid for the same type of panel with aluminium or steel frame
- Test results are also valid for the same type of panel with vertical LVL battens, without fire retardant treatment, thickness minimum 27 mm

Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

Cavity:

- Unfilled or filled with insulation of stone wool with a nominal density 30-70 kg/m³ according to EN 13162
- The depth of the cavity is minimum 28 mm
- Test results are also valid for other higher thickness of air space between the back of the board and the insulation

Joints:

- Vertical joints are with an EPDM foam gasket backing or Rockpanel strip backing as described in table 4 and horizontal joints can be open (ventilated constructions) or with an aluminium profile (ventilated and non-ventilated constructions)
- The result from a test with an open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminium profiles

The classification is also valid for the following product parameters:

Thickness:

• Nominal 8 mm

Density Nominal 1050 kg/m³

Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V.

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which describes the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / Rockpanel in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On every pallet label and/or on the protective film of every board the website is printed which guides the end user to the most actual information.

For non-ventilated use, the substrate shall be airtight.

The boards are in general mounted with a joint width of between 5 and 8 mm.

If the junctions are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The water diffusion resistance of the boards is declared as a means for the designer to decide whether they are sufficiently vapour permeable, especially when used for cladding without ventilated cavities at the back. The designer can then establish that condensation in the entire wall as a result of water vapour diffusion will not occur or will occur only to an extent where damage is not caused during the condensation period and the wall will dry out again during the evaporation period. The designer shall consider the critical moisture content for all the integrated materials.

For non-ventilated intended use, the pressure level preceding the pressure level where leakage occurs is declared as a means for the designer to decide on the necessity of the use of a vapour control membrane.

The panels should not be taken into account when designing a timber stud wall to resist racking forces.

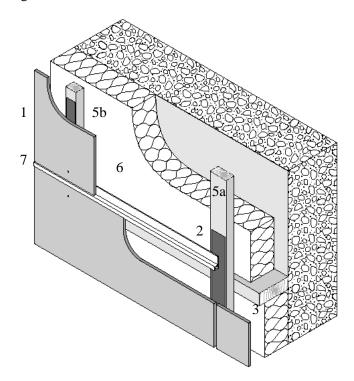
The holes for the fixings are drilled into the panels not less than 15 mm from a vertical edge and 50 mm from a horizontal edge (see Annex 2). The panels are fixed making sure that the screws are not over-tightened.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

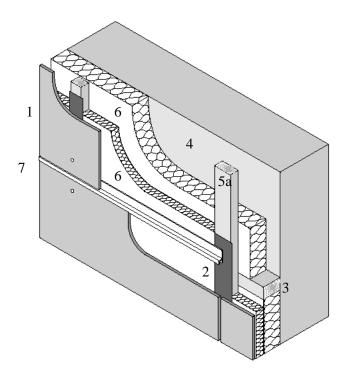
According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

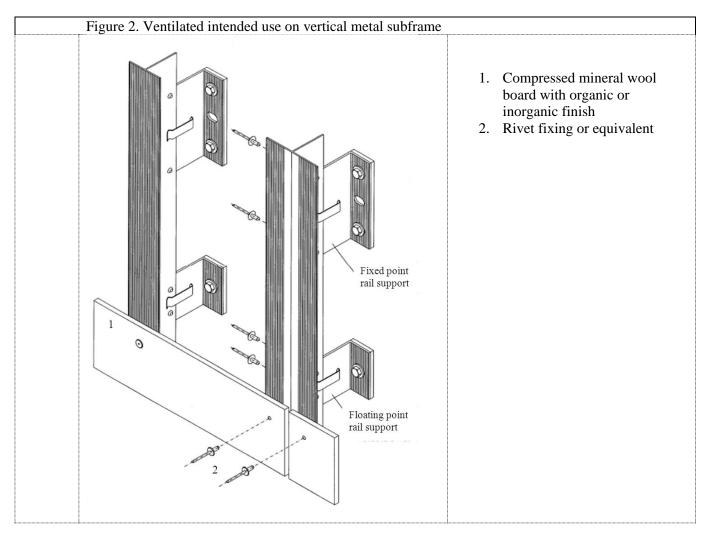
5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

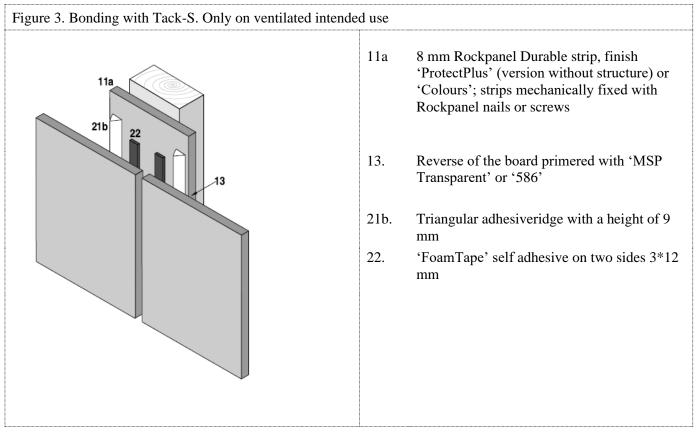

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2020-05-05 by

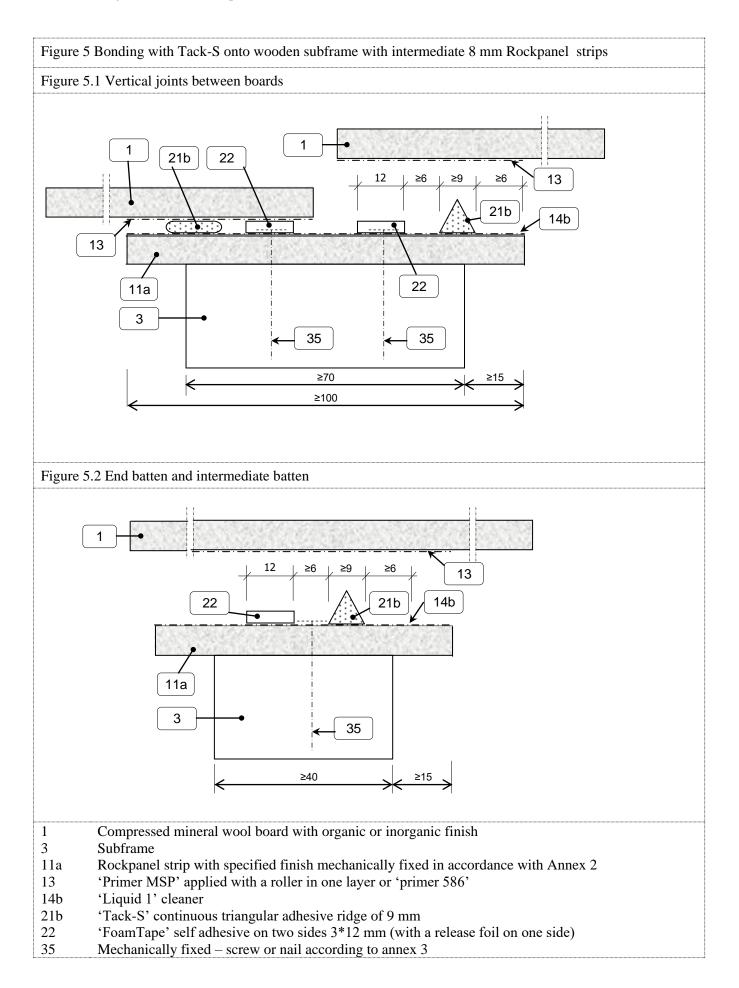
Thomas Bruun Managing Director, ETA-Danmark

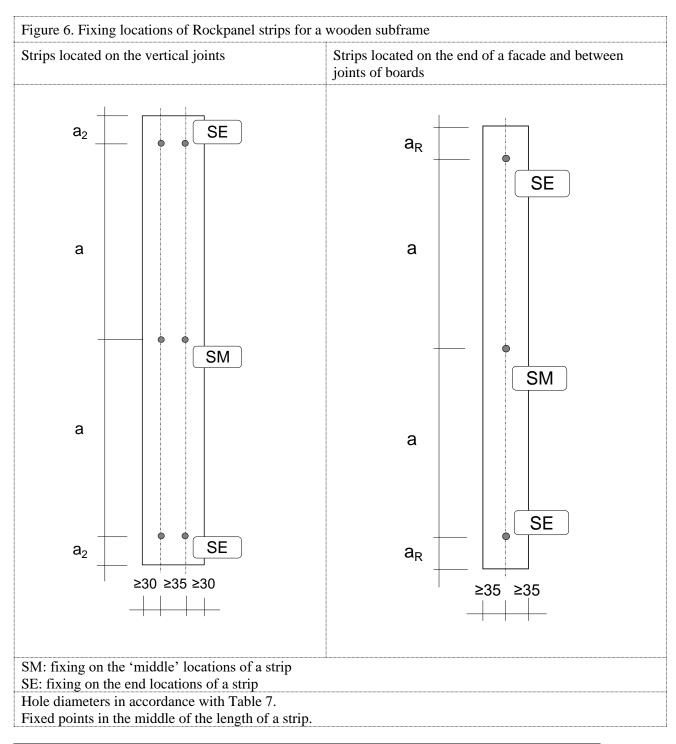

Annex 1 Pre-fabricated compressed mineral wool boards with organic or inorganic finish

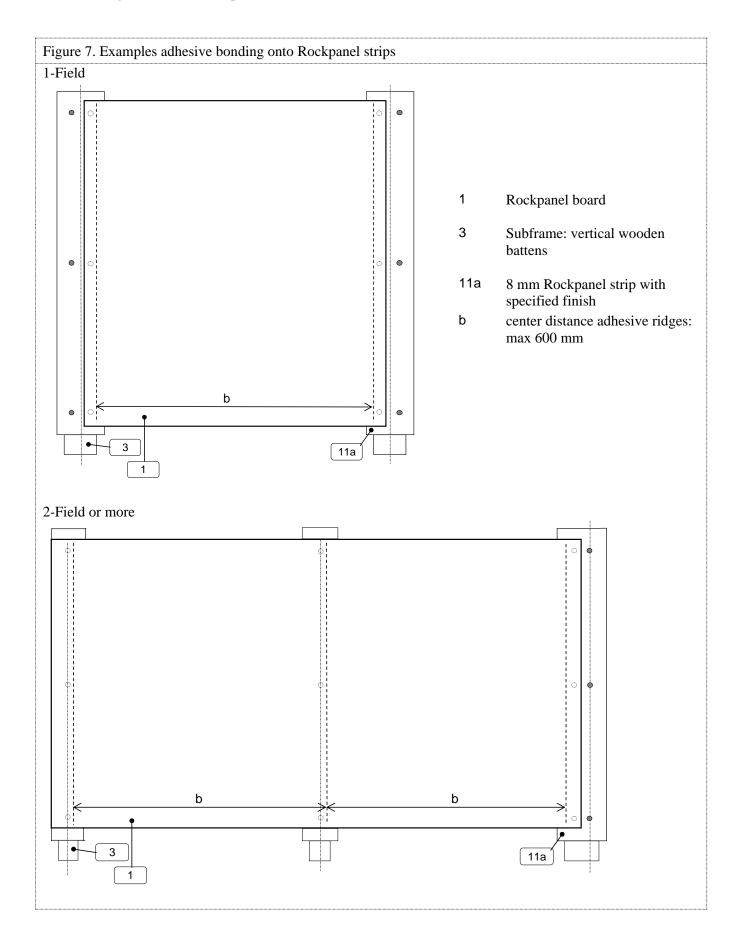

Figure 1a. Ventilated intended use on vertical timber battens

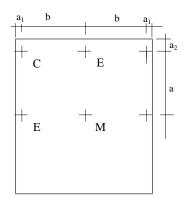


- 1. Compressed mineral wool board with organic or inorganic finish
- 2. EPDM foam gasket
- 3. Timber beam
- 4. Vapour barrier
- 5. Batten: a joint and b intermediate
- 6. Insulation
- 7. Rockpanel "A" 8 mm extruded aluminiumchairprofile or equivalent


Figure 1b. Non ventilated intended use on vertical timber battens







Annex 2 Mechanically fixing of Rockpanel strips for adhesive bonding of Rockpanel boards Minimum edge distances, fixing locations in the strip and maximum fixing distances

Fixing distances 8 mm Roo	ckpanel strips	
D istance	Fixing	distance
Fixing	a_{max}	a_2
Screw	400 mm	≥ 50 mm
Nail	300 mm	\geq 50 mm

C: Fixing in corner E: Fixing at edge M: Fixing at intermediate position

See Figure 8 for examples of possible installation methods

Remark Rivet fixing only with a riveting tool with rivet spacer

Table 5: Minimum edge	distances and maximur	n distances betwee	n fastenings in mm	l
Fixing type	b _{max}	a _{max}	a_1	a_2
Screw	600	600	15	50
Nail	600	400	15	50
Rivet	600	600	15	50
Adhesive	600	Continuously a	pplied triangular ad	hesive ridge of 9 mm

Table 6	: Design axia	l load $X_d =$	X_k / γ_M for 8 mm board fixings					
			load must be multiplied with $\gamma_F = 1,5$					
Fixing t	type				Position M	Position E	Position C	
Rivet [a] according to table 6.1						309 N	156 N	
			ub-construction according table 6.2		533 N	241 N	118 N	
		<u> </u>	sub-construction		see Table	6-3 row (25)	(26), (27)	
			kpanel strip onto timber sub-construct	tion [b]		5-4 row (25)		
Combin	ation screw a	nd 8 mm in	termediate strips for bonding purposes	5	see Table	6-8 row (21)	, (22), (23)	
			d strips or joint strips for bonding pur	poses	see Table	6-7 row (21)	, (22), (23)	
	tandard vers					6-5 row (25)		
	igh performa				see Table	6-6 row (25)	, (26), (27)	
		andard ver	rsion and 8 mm intermediate strips for	r	see Table 6	-10 row (21)	, (22), (23)	
	g purposes ation nail – st	andard ve	rsion and 8 mm end strips or joint strip	ps for				
	purposes				see Table (5-9 row (21)	, (22), (23)	
Adhesiv	ve [c]		rear board onto specified finish		aracteristic bad X_k N/mm	0	axial load / γ _M N/mm¹	
			strips with ProtectPlus		7.00			
shear	-40°C, -20°C	C, +23°C	strips with Colours	7,00		0	0,175	
snear	and +80°C		'primer 586'		7,69	0	0,192	
			Aluminium		8,58		,214	
	-40°C, -20°C	~ +23°C	strips with ProtectPlus		6,94		,735	
	and $+80^{\circ}C$	c, 125 C	strips with Colours		8,30		,075	
tensile		~ .	'primer 586'		4,58	1	,145	
	-20°C, +23° +80°C	C and	Aluminium		5,92	1	,48	
FoamTa	ipe	Rear boa	rd onto		acteristic X_k N/mm ¹	Design	X _d N/mm ¹	
		strips wit	h ProtectPlus and Colours		1,00	(),05	
shear	+23°C	'primer 5	86'		0,85),04	
		Aluminiu	ım		0,99),05	
	-	1		Cha	racteristic X_k	<u> </u>	d N/mm ¹	
			h ProtectPlus			0,73		
tensile	+23°C		h Colours		1,17			
CHOIC	125 C	[•] primer 5			0,86			
		Aluminiu	ım	0,47				

[a] For correct fixing, a riveting tool with rivet spacer must be used

[b] With reduced withdrawal capacity because of the effective length l_{eff} of the threaded part

[c] With a triangle of 9 by 9 mm, deformed to a rectangle with a thickness of 3 mm (thickness of foam tape), see annex 1

Table 6-1 : Characteristic axial load X_k and design va	lue of the axial	load $X_d = X_k$	′ γ _M	
for the combination rivet and 8 mm boards	5			_
board thickness		8 mm		(1)
location of the fixing in the board	M-middle	E-edge	C-corner	(2)
pull-throug <u>h N</u>				(3)
characteristic pull-through N	1308	810	540	(4)
material factor Rockpanel γ_M	2,0	2,0	2,0	(5)
design value X_d of the pull-through N	654	405	270	(6)
wind suction				(7)
average wind load in N/m ²	2567	2769	2958	(8)
average strength N	1449	617	311	(9)
material factor Rockpanel γ_{M}	2,0	2,0	2,0	(10)
design value X_d of the pull-through N	725	309	156	(11)
pull-out strength				(12)
manufacturer's declaration N	1300	1300	1300	(13)
material factor aluminium γ_{M}	1,3	1,3	1,3	(14)
design value X_d of the pull-out N	1000	1000	1000	(15)
design value of the axial load $X_d = X_k / \gamma_M$ for the combination rivet and 8 mm boards	654	309	156	(16)
board span b		600		(17)
fixing distance a		600		(18)

[a] For correct fixing, a riveting tool with rivet spacer must be used

Table 6-2: Characteristic axis combination steel, screw and		lesign value of the	axial load $X_d = X$	$_{k}$ / γ_{M} for the	
Board thickness			8 mm		(1)
		M-middle	E-edge	C-corner	(2)
Pull-through					(3)
Characteristic pull-throug	gh N	1066	850	617	(4)
material factor Rockpane	l γ _M	2,0	2,0	2,0	(5)
design value X _d of the pu	ll-through N	533	425	309	(6)
Wind suction					(7)
average wind load in N/n	1 ²	1992	2161	2243	(8)
average strength N		1105	482	236	(9)
material factor Rockpane	l γ _M	2,0	2,0	2,0	(10)
design value X _d of the pu	ll-through N	553	241	118	(11)
pull-out strength					(12)
manufacturer's declaration	on N	1100	1100	1100	(13)
material factor steel γ_M		1,3	1,3	1,3	(14)
design value X _d of the pu	ll-out N	846	846	846	(15)
design value of the axial load 2	$X_d = X_k / \gamma_M$	533	241	118	(16)
for the combination steel screw	v and 8 mm				
boards					
board span b			600		(17)
fixing distance a			600		(18)

	thickness		6	ets), with $\alpha \ge 30^{\circ}$ [e] 8 mm			
	on of the fixing in the	e board		M-middle		C-corner	
	rough N			ł			
	haracteristic pull-thr	<u> </u>		1066	850	617	
	naterial factor Rockp	$anel\gamma_M$	(manufacturers	2,0	2,0	2,0	
	eclaration)	11 /1	1 11				
wind s	esign value X_d of the	e pull-ti	rough N	533	425	309	
	verage wind load in	N/m ²		1992	2161	2243	
	verage strength N	1 \/ 111		1105	482	236	
	naterial factor Rockp	anelvu	(manufacturers				
	eclaration)	anoi / M	(inditurdeturers	2,0	2,0	2,0	
	esign value X_d of the	e pull-th	nrough N	553	241	118	
withdr	awal capacity						
	characteristic v	withdray	wal capacity Fax,k,Rk	[b] [c] [d]			
	strength class		$\rho_{\rm k} = 320 \ {\rm kg/m^3}$	858 [b]	858 [b]	858 [b]	
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	922 [b]	922 [b]	922 [b]	
	m	odificat	tion factor for k_{mod}	k _{mod} [a]			
axi	ial withdrawal capac			[d]			
	strength class		$\rho_k = 320 \text{ kg/m}^3$	858 • k _{mod}	858 • k _{mod}	858 • k _{mod}	
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	922 • k _{mod}	922 • k _{mod}	922 • k _{mod}	
	material factor (NA 1:2004+A1:2008	A to) El	N 1995-1-	$\gamma_{\rm M} = 1,30$ [withdrawal capacity]			
	sign value X_d of the pacity N		ithdrawal				
	strength class		$\rho_k = 320 \text{ kg/m}^3$	660 • k _{mod}	660 • k _{mod}	660 • k _{mod}	
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	709 • k _{mod}	709 • k _{mod}	709 • k _{mod}	
design	value of the axial l	oadX _d =		m	inimum value of	f the rows:	
str	ength class	$\rho_k=320\ kg/m^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)		
	wood (EN 338) $C24 \ \rho_k = 350 \ \text{kg/m}^3$				(6) (12) (24)	(6) (12) (24)	
	oard span b				600		
fi	ixing distance a		ha comicaclass (humidi		600		

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 24,75/6 = 4,12$ mm);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

ooard thickness	,	n the use of Rockpa		n (with the use of	
ocation of the fixing in th	e board		M-middle	E-edge	C-corner
oull-through N	e board		M-IIIdule	L-cuge	C-comer
characteristic pull-th	rough N		1066	850	617
material factor Rock	U	anufacturers			
declaration)	1 1 1 1		2,0	2,0	2,0
design value X_d of the	e pull-thro	ugh N	533	425	309
wind suction					
average wind load in	N/m²		1992	2161	2243
average strength N			1105	482	236
material factor Rock declaration)	panelγ _M (n	nanufacturers	2,0	2,0	2,0
design value X_d of the	e pull-thro	ugh N	553	241	118
withdrawal capacity					
characteristic	withdrawal	capacity Fax,k,Rk [b]	[c] [d]		
strength class	C18	$\rho_{\rm k} = 320 \ {\rm kg/m^3}$	336 [b]	336 [b]	336 [b]
wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	361 [b]	361 [b]	361 [b]
	modifica	tion factor for k _{mod}		k _{mod} [a]	
axial withdrawal capa	city F _{ax.k.Rk}	k _{mod} [a] [b] [c] [d]			
strength class	C18	$\rho_{\rm k} = 320 \rm kg/m^3$	336 • k _{mod}	336 • k _{mod}	336 • k _{mod}
wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	361 • k _{mod}	361 • k _{mod}	361 • k _{mod}
material factor (N 1:2004+A1:2008	A to) EN 1		$\gamma_{\rm M} = 1,30$ [withdrawal capacity]		
design value X_d of the	axial with	drawal capacity N			
strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	258 • k _{mod}	258 • k _{mod}	258 • k _{mod}
wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	278 • k _{mod}	278 • k _{mod}	278 • k _{mod}
design value of the axial load $X_d = X_k / \gamma_M N$			min	imum value of th	ne rows:
strength class	C18	$\rho_{\rm k} = 320 \rm kg/m^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)
board span b	·	· · · · · ·		600	
fixing distance a			600		

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 16,75/6 = 2,79$ mm);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

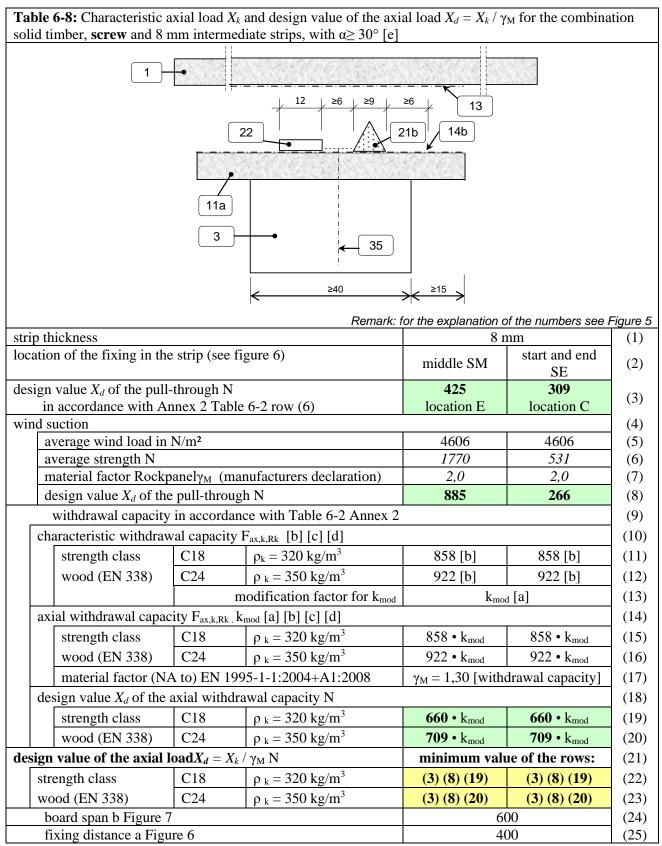
Та	ble 6-5: Characteristic	axial load X	T_k and design value	of the axial load	$X_d = X_k / \gamma_M$ for t	he combination solid
	iber, nail – standard v					
board thickness					n (with the use of	U /
	ation of the fixing in th	e board		M-middle	E-edge	C-corner
pu	ll-through N					
	characteristic pull-th	U		752	674	577
	material factor Rock declaration)	panel γ _M (m	anufacturers	2,0	2,0	2,0
	design value X_d of the	ne pull-throu	ıgh N	376	337	289
wi	nd suction					
	average wind load in	n N/m²		2637	4131	5162
	average strength N			1009	627	397
	material factor Rock declaration)	panel γ_M (n	nanufacturers	2,0	2,0	2,0
	design value X_d of the	ne pull-throu	ıgh N	505	314	199
wi	thdrawal capacity		-			
	characteristic withdra	wal capacity	$F_{ax,k,Rk}$ [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \ {\rm kg/m^3}$	168	168	168
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	201	201	201
		modificat	ion factor for k_{mod}		k _{mod} [a]	
	axial withdrawal capa	city F _{ax.k.Rk}	k _{mod} [a] [c] [d]			
	strength class	C18	$\rho_{\rm k} = 320 \rm kg/m^3$	168 • k _{mod}	168 • k _{mod}	168 • k _{mod}
	wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	201 • k _{mod}	201 • k _{mod}	201 • k _{mod}
	material factor (N 1:2004+A1:2008	A to) EN 19	995-1-	γ _M =	1,30 [withdrawal	capacity]
	design value X_d of the	e axial with	lrawal capacity N			
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	129 • k _{mod}	129 • k _{mod}	129 • k _{mod}
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	155 • k _{mod}	155• k _{mod}	155 • k _{mod}
de	sign value of the axial	$load X_d = X$	$_{k}$ / γ_{M} N	min	imum value of th	ne rows:
	strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(6) (12) (23)	(6) (12) (23)	(6) (12) (23)
	wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(6) (12) (24)	(6) (12) (24)	(6) (12) (24)
	board span b				600	
	fixing distance a				600	

[c]: angle α between shaft and the wood grain: $\alpha \geq 80^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

Table 6-6: Characteristic axial loa							
solid timber, nail, high performance	ce version 35 mm and 8 mm	n boards (with	the use of gas	skets) , with α	≥80°		
[e]							
board thickness		8 mm (with use of a	gasket)	(1)		
location of the fixing in the board		M-middle	E-edge	C-corner	(2)		
Pull-through N					(3)		
characteristic pull-through N		752	674	577	(4)		
material factor Rockpanel γ_M (r	nanufacturers declaration)	2,0	2,0	2,0	(5)		
design value X _d of the pull-thr	ough N	376	337	289	(6)		
Wind suction					(7)		
average wind load in N/m ²		2637	4131	5162	(8)		
average strength N		1009	627	397	(9)		
material factor Rockpanel $\gamma_{\rm M}$ (r	nanufacturers declaration)	2,0	2,0	2,0	(10)		
design value X _d of the pull-thro		505	314	199	(11)		
Withdrawal capacity					(12)		
characteristic withdrawal capac	ity F _{ax,k,Rk} [c] [d]				(13)		
	= 320 kg/m3	403	403	403	(14)		
wood (EN 338) C24 $\rho_k =$	= 350 kg/m3	482	482	482	(15)		
modificatio	n factor for kmod		k _{mod} [a]		(16)		
axial withdrawal capacity Fax,k,H	_k . k _{mod} [a] [c] [d]				(17)		
	= 320 kg/m3	403 • k _{mod}	403 • k _{mod}	403 • k _{mod}	(18)		
wood (EN 338) C24 $\rho_k =$	= 350 kg/m3	482 • k _{mod}	482 • k _{mod}	482 • k _{mod}	(19)		
material factor (NA to) EN 1995-1-	$\gamma_{\rm M} = 1,30$ [w	ithdrawal cap	acity]	(20)		
1:2004+A1:2008			_	-			
design value X _d of the axial wit	hdrawal capacity N				(21)		
Strength class C18 $\rho_k =$	= 320 kg/m3	310 • k _{mod}	310 • k _{mod}	310 • k _{mod}	(22)		
wood (EN 338) C24 $\rho_k = 350 \text{ kg/m3}$ 370 · k _{mod} 370 · k _{mod} 370 · k _{mod}							
design value of the axial load $X_d = X_k / \gamma_M N$ minimum value of the rows:							
Strength class C18 $\rho_k = 320 \text{ kg/m3}$ (6)(11)(22) (6)(11)(22) (6)(11)(22)							
wood (EN 338) C24 $\rho_k = 350 \text{ kg/m3}$ (6)(11)(23) (6)(11)(23) (6)(11)(23)							
Board span b 600							
Fixing distance a			400		(28)		

[c]: angle α between shaft and the wood grain: $\alpha \ge 80^{\circ}$


[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

		T_k and design value of the axi		M for the combination
solid timber, screw and 8 r	nm end str	ips or joint strips, with $\alpha \ge 30$)° [e]	
	21b 2		21b	13 14b
		Remark	for the explanation o	of the numbers see F
strip thickness		Nonidik. I		nm
location of the fixing in the	e strip (see	figure 6)	middle SM	start and end SE
design value X_d of the pull-	•		425	309
in accordance with Ar	nnex 2 Tab	le 6-2 row (6)	location E	location C
wind suction average wind load in	N/m2		4392	4392
average strength N	11/111		823	247
	anelv _M (m	anufacturers declaration)	2,0	2,0
design value X_d of the	•		412	124
Ű.	A	ince with Table 6-2 Annex 2		•
characteristic withdraw				
strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	858 [b]	858 [b]
wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	922 [b]	922 [b]
		modification factor for k _{mod}	k _{mo}	d [a]
axial withdrawal capac	ity F _{ax,k,Rk} .	k _{mod} [a] [b] [c] [d]		
strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	858 • k _{mod}	858 • k _{mod}
wood (EN 338)	C24	$\rho_{\rm k} = 350 \rm kg/m^3$	922 • k _{mod}	922 • k _{mod}
material factor (NA	A to) EN 19	995-1-1:2004+A1:2008	$\gamma_{\rm M} = 1,30$ [with	drawal capacity]
design value X_d of the	axial withd	rawal capacity N		
strength class	C18	$\rho_{\rm k} = 320 \ \rm kg/m^3$	660 • k _{mod}	660 • k _{mod}
wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	709 • k _{mod}	709 • k _{mod}
design value of the axial l	$oadX_d = X_k$		minimum valu	ue of the rows:
strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	(3) (8) (19)	(3) (8) (19)
wood (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	(3) (8) (20)	(3) (8) (20)
board span b Figure 7				00
fixing distance a Figu		the serviceclass (humidity cond		00

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 24,75/6 = 4,12 \text{ mm}$);

[c]: angle α between shaft and the wood grain: $\alpha \geq 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

[b]: with reduced thread diameter to fulfil the minimum l_{ef} demand ($d = l_{ef} / 6 = 24,75/6 = 4,12$ mm);

[c]: angle α between shaft and the wood grain: $\alpha \ge 30^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

		X_k and design value of the a		
	endard v	Persion and 8 mm end strips 1 1 1 1 1 1 1 1 1 1	s or joint strips, wi $26 \neq 29 \neq 20$ 21 22 35 22 35	
	<	≥100	→< <u> </u>	\rightarrow
~				
in thickness		Remark		of the numbers see
ip thickness cation of the fixing in th	e strin (see	figure 6)	middle SM	mm start and end SE
sign value X_d of the pull			337	289
in accordance with A	•		location E	location C
nd suction	27/ 6		4	1505
average wind load in	N/m²		4503	4503
average strength N	nanely, (r	nanufacturers declaration)	506 2,0	152 2,0
design value X_d of th			2,0	76
•		ance with Table 6-4 Annex		
characteristic withdra				
strength class	C18	$\rho_k = 320 \text{ kg/m}^3$	280	280
wood (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	334	334
	n	nodification factor for k _{mod}	kma	od [a]
axial withdrawal capa	city F _{ax,k,Rk}	k _{mod} [a] [c] [d]		
strength class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	168 • k _{mod}	168 • k _{mod}
wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	201 • k _{mod}	201 • k _{mod}
material factor (N	A to) EN 1	995-1-1:2004+A1:2008	$\gamma_{\rm M} = 1,30$ [with	drawal capacity]
design value X_d of the	axial with	· ·		
strength class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	129 • k _{mod}	129 • k _{mod}
wood (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	155 • k _{mod}	155 • k _{mod}
sign value of the axial	$load X_d = Z$		minimum val	ue of the rows:
strength class	C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	(3) (8) (19)	(3) (8) (19)
wood (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	(3) (8) (20)	(3) (8) (20)
board span b Figure				00
fixing distance a Fig	ure 6		3	00

[c]: angle α between shaft and the wood grain: $\alpha \ge 80^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

Table 6-10	: Characteristic	axial load	X_k and design value of the	axial load $X_d = X_k / \cdot$	$\gamma_{\rm M}$ for the combi
			ersion and 8 mm intermed		
					1
		•			
)
					J
			22	21b 14b	
		•			
		\square			
		_11a			
				_	
		3	35		
			!		
			≥40	. ≥15 .	
			<	\rightarrow	
1 . 1			Remark	c: for the explanation o	
strip thickno	ess the fixing in th	a strin (saa	figure 6)	8 mi	m start and end
ocation of	the fixing in th	e surp (see	ligure 6)	middle SM	Start and end SE
design valu	$e X_d$ of the pull	l-through N	[337	289
	ordance with A	nnex 2 Tab	ble 6-4 row (6)	337	209
vind suctio		NT/ 2		2070	2070
	ge wind load in ge strength N	N/m^2		3078 887	3078 266
		panely _M (n	nanufacturers declaration)	2,0	2,0
	value X_d of th			444	133
vithdrawal	capacity				
characte	eristic withdray	wal capacit	$y F_{ax,k,Rk}$ [c] [d]		
stre	ength class	C18	$\rho_k = 320 \ kg/m^3$	280 [b]	280 [b]
wo	od (EN 338)	C24	$\rho_k = 350 \text{ kg/m}^3$	334 [b]	334 [b]
			odification factor for k_{mod}	$\mathbf{k}_{\mathrm{mod}}$	[a]
axial w	ithdrawal capa	city F _{ax,k,Rk}	k _{mod} [a] [c] [d]		1
stre	ength class	C18	$\rho_k = 320 \text{ kg/m}^3$	168 • k _{mod}	168 • k _{mod}
WO	od (EN 338)	C24	$\rho_{\rm k} = 350 \ \rm kg/m^3$	201 • k _{mod}	201 • k _{mod}
			995-1-1:2004+A1:2008	$\gamma_{\rm M} = 1,30$ [withdr	awal capacity]
<u> </u>			lrawal capacity N		
	ength class	C18	$\rho_k = 320 \text{ kg/m}^3$	129 • k _{mod}	129• k _{mod}
	od (EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	155 • k _{mod}	155 • k _{mod}
	e of the axial			minimum value	
strength		C18	$\rho_{k} = 320 \text{ kg/m}^{3}$	(3) (8) (19)	(3) (8) (19)
	EN 338)	C24	$\rho_{k} = 350 \text{ kg/m}^{3}$	(3) (8) (20)	(3) (8) (20)
	span b Figure			600	
tıxıng	distance a Fig			300 aditions) and the load	

[c]: angle α between shaft and the wood grain: $\alpha \geq 80^{\circ}$

[d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

For bonded applications the Rockpanel strip (item 11a on figure 3 in annex 1) must be mechanically fixed in such a way that it can move tension free on the wooden battens.

Therefore, the Rockpanel strip is mounted with fixed points and with moving points. The hole diameters for the fixing points are indicated in table 7 (screw and nail fixing).

The characteristic loads which may be taken for the combination Rockpanel strips and fixings (screw and nail fixing), are given in table 6-7, 6-8, 6-9 and 6-10 (position E and C).

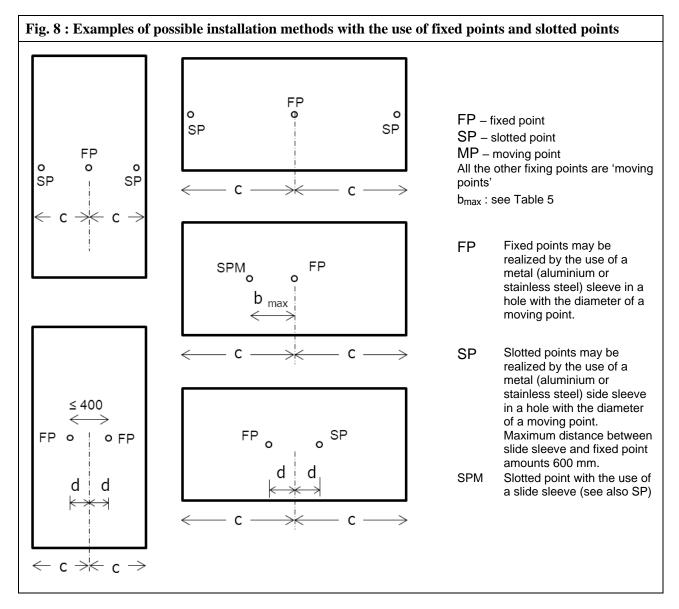
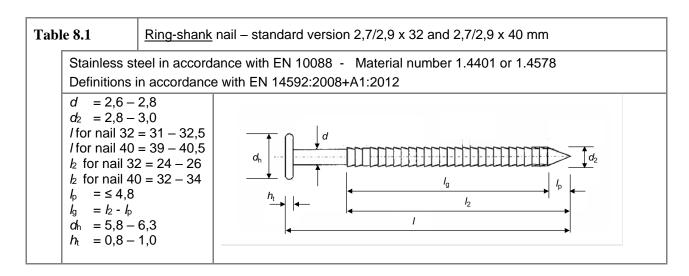
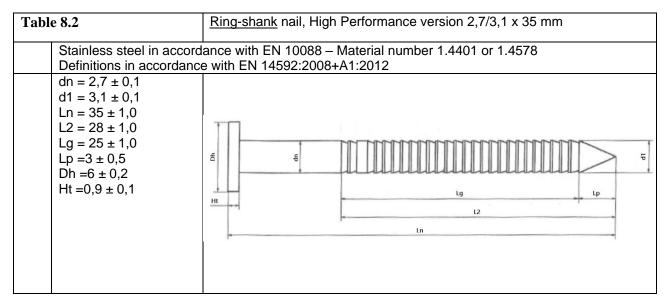
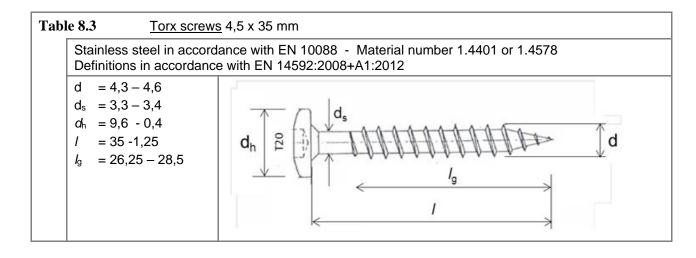

The characteristic loads which may be taken for the combination boards and fixings (rivet, screw and nail fixing), are given in table 6-1, 6-2, 6-3, 6-4, 6-5 and 6-6 (position M, E and C)

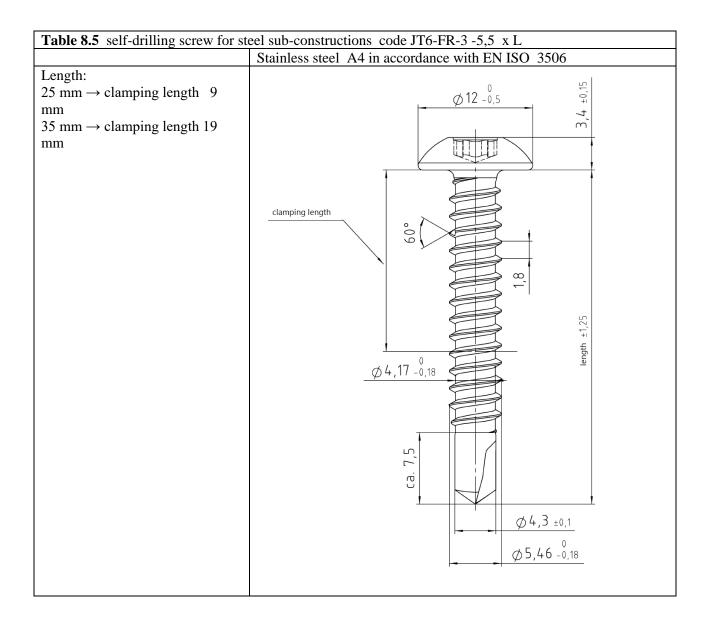
 Table 7. Hole dimensions [mm] for Rockpanel boards mechanically fixed and Rockpanel strip in bonded applications


Fixing type	Fixed point	Moving point	Slotted points	Board dimension considered	
Screw for timber	3,2	6,0	3,4 x 6,0	1200*3050	
Nail	2,5	3,8	2,8 x 4,0	1200*1750 [b]	
Rivet [a]	5,2	8,0	5,2 x 8,0	1200*3050	
Screw for steel	4,3	8,0	4,3 x 8,0	1200*3050	
Edge distances: $a_1 \ge 15$ mm and $a_2 \ge 50$ mm					


[a] For correct fixing, a riveting tool with rivet spacer must be used


[b]: In the case of a larger panel length, and certain climatic conditions, a tension between shaft and panel-hole may occur.

Annex 3 Fastener specification for wooden subframes



or stainless	steel			
	SFS	SFS Stainless	MBE	MBE stainless
	Aluminium	steel A4 [a]	Aluminium	steel [b]
Code	AP14-50180-S	SSO-D15-50180	1290406	1290806
Body	aluminium EN	stainless steel	aluminium EN	stainless steel
	AW-5019	material number	AW-5019	material number
	(AlMg5) in	1.4578 in	(AlMg5) in	1.4567 in
	accordance with	accordance with	accordance with	accordance with
	EN 755-2	EN 10088	EN 755-2	EN 10088
Mandrel	stainless steel	stainless steel	stainless steel	stainless steel
	material number	material number	material number	material number
	1.4541 in	1.4541 in	1.4541 in	1.4541 in
	accordance with	accordance with	accordance with	accordance with
	EN 10088	EN 10088	EN 10088	EN 10088
Pull-out	$F_{mean,n} = 2038$	$F_{mean,n} = 1428$	$F_{mean,10} = 2318$	$F_{mean,10} = 3212$
strength	s = 95	s = 54	s = 85	s = 83
	F _{u,5} = 1882	$F_{u,5} = 1339$	$F_{u,5} = 2155$	$F_{u,5} = 3052$
d ¹	5	5	5	5
d ²	14	15	14	14
d ³	2,7	2,7	2,7	2,95
1	18	18	18	16
k	1,5	1,5	1,5	1,5
profile	aluminium	steel	aluminium	steel
	$t \ge 1,5 mm$	t≥1,0 mm [a]	$t \ge 1,8 mm$	$t \ge 1,5 \text{ mm [b]}$

- [a]: The minimum thickness of the vertical steel profiles is 1,0 mm. The steel quality is S320GD +Z EN 10346 number 1.0250 (or equivalent for cold forming). For minimum coating thickness see [c]
- [b]: The minimum thickness of the vertical steel profiles is 1,5 mm. The steel quality is EN 10025-2:2004 S235JR number 1.0038. For minimum coating thickness see [c]
- [c]: The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment (the Zinc Life Time Predictor can be used to calculate the Corrosion Rate in μm/y for a Z coating: <u>http://www.galvinfo.com:8080/zclp/</u> (copyright The International Zinc association).

The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner.

Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

Annex 4

Table 9 – Impact resistance: Definition of use categories

Use category	Description		
Ι	A zone readily accessible at ground level to the public and vulnerable to hard body impacts but not subjected to abnormally rough use.		
II	A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care.		
III	A zone not likely to be damaged by normal impacts caused by people or by thrown or kicked objects.		
IV	A zone out of reach from ground level		

The hard body impact with steel ball represents the action from heavy, non-deformable objects, which accidentally hit the kit.